

Microenvironment mapping of the PrP^{Sc} Interactome

Robert C.C. Mercer, PhD

Department of Biochemistry & Cell Biology Boston University Chobanian & Avedisian School of Medicine Boston, Massachusetts

CJD Foundation Family Conference Washington, DC July 19th-21st, 2024

Experimental Aims

- 1. To apply a novel technology, µMap, to discover proteins that interact with PrPSc
- 2. Interrogate "hits" using CRISPR mediated knockout and/or overexpression

Rationale: knowledge of PrP^C interactions = biological insights

Prion protein attenuates excitotoxicity by inhibiting NMDA receptors

Houman Khosravani, Yunfeng Zhang, ¹ Shigeki Tsutsui, ² Shahid Hameed, ¹ Christophe Altier, ¹ Jawed Hamid, ¹ Lina Chen, ¹ Michelle Villemaire, ² Zenobia Ali, ² Frank R. Jirik, ² and Gerald W. Zamponi ¹

The 37-kDa/67-kDa Laminin Receptor Acts as a Receptor for Infectious Prions and Is Inhibited by Polysulfated Glycanes

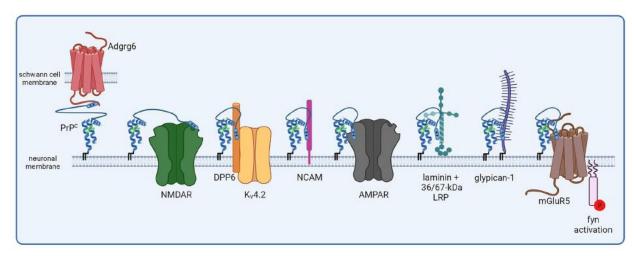
Sabine Gauczynski, Daphne Nikles, Susanne El-Gogo, Dulce Papy-Garcia, Clémence Rey, Susanne Alban, Denis Barritault. Corinne Ida Lasmézas. and Stefan Weiss

The Prion Protein Modulates A-type K⁺ Currents Mediated by Kv4.2 Complexes through Dipeptidyl Aminopeptidase-like Protein 6*

Received for publication, May 24, 2013, and in revised form, November 8, 2013 Published, JBC Papers in Press, November 13, 2013, DOI 10.1074/jbc.M113.488650

Robert C. C. Mercer^{†51,2}, Li Ma^{§†1}, Joel C. Watts^I, Robert Strome^{II}, Serene Wohlgemuth^{†5}, Jing Yang[†], Neil R. Cashman**, Michael B. Coulthart^{‡‡}, Gerold Schmitt-Ulms^{II}, Jack H. Jhamandas^{§†3}, and David Westaway^{†5†554}

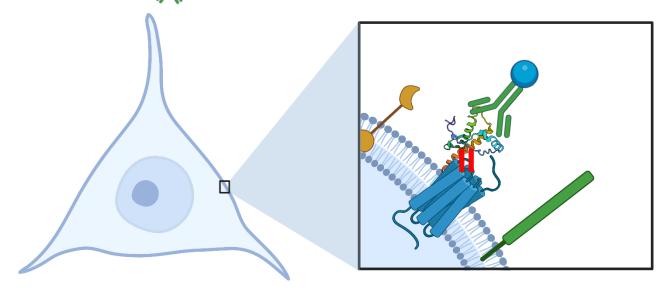
The prion protein is an agonistic ligand of the G protein-coupled receptor Adgrg6

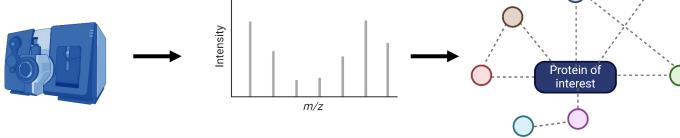

Alexander Küffer¹*, Asvin K. K. Lakkaraju¹*, Amit Mogha², Sarah C. Petersen², Kristina Airich¹, Cédric Doucerain¹, Rajlakshmi Marpakwar¹, Pamela Bakirci¹, Assunta Senatore¹, Arnaud Monnard¹, Carmen Schiavi¹, Mario Nuvolone¹, Bianka Grosshans³, Simone Hornemann¹, Frederic Bassilana³, Kelly R. Monk² & Adriano Aguzzi¹

The Prion Protein Controls Polysialylation of Neural Cell Adhesion Molecule 1 during Cellular Morphogenesis

Mohadeseh Mehrabian^{1,2}, Dylan Brethour^{1,2}, Hansen Wang¹, Zhengrui Xi¹, Ekaterina Rogaeva^{1,3}, Gerold Schmitt-Ulms^{1,2}*

Cellular prion protein mediates impairment of synaptic plasticity by amyloid-β **oligomers**


Juha Laurén¹, David A. Gimbel¹, Haakon B. Nygaard¹, John W. Gilbert¹ & Stephen M. Strittmatter¹


Interactomic studies of PrP^C

formaldehyde (RED) sticks proteins together

- Antibodies (,) are used to isolate protein complexes for analysis

Mass spectrometry

Protein "fingerprint"

Interaction network

ARTICLES

Time-controlled transcardiac perfusion cross-linking for the study of protein interactions in complex tissues

Gerold Schmitt-Ulms 1,2,8, Kirk Hansen 3, Jialing Liu 4, Cynthia Cowdrey 5, Jian Yang 5, Stephen J DeArmond 1,5, Fred E Cohen^{1,6,7}, Stanley B Prusiner^{1,2,7} & Michael A Baldwin^{1,2,3}

OPEN @ ACCESS Freely available online

Interactome Analyses Identify Ties of PrP^C and Its Mammalian Paralogs to Oligomannosidic N-Glycans and **Endoplasmic Reticulum-Derived Chaperones**

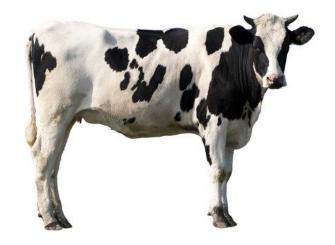
Joel C. Watts^{1,2:9ua}, Hairu Huo^{1.9}, Yu Bai^{1:9ub}, Sepehr Ehsani^{1,2:9}, Amy Hye Won^{1,2}, Tujin Shi¹, Nathalie Daude³, Agnes Lau³, Rebecca Young⁴, Lei Xu⁴, George A. Carlson⁴, David Williams⁵, David Westaway³ Gerold Schmitt-Ulms 1,2x

OPEN The prion protein is embedded in a molecular environment that modulates transforming growth factor β and integrin signaling

> $Farinaz\,Ghodrati^{1,2}, Mohadeseh\,Mehrabian^{1,2}, Declan\,Williams^1, Ondrej\,Halgas^3,$ Matthew E. C. Bourkas^{1,3}, Joel C. Watts^{1,3}, Emil F. Pai 63,4 & Gerold Schmitt-Ulms 61,2

The cellular prion protein interacts with and promotes the activity of Na,K-ATPases

Declan Williams^{1,©}, Mohadeseh Mehrabian^{1,2,©}, Hamza Arshad^{1,3,©}, Shehab Eid^{1,2}, Christopher Sackmann^{0,1}, Wenda Zhao^{0,1,2}, Xinzhu Wang^{1,2}, Farinaz Ghodrati^{1,2}, Claire E. Verkuyl¹, Joel C. Watts^{1,3}, Gerold Schmitt-Ulms₆, *


Expression of PrP is required for the manifestation of prion disease...

Cell, Vol. 73, 1339-1347, July 2, 1993, Copyright © 1993 by Cell Press

Mice Devoid of PrP Are Resistant to Scrapie

H. Büeler,* A. Aguzzi,† A. Sailer,* R.-A. Greiner,‡
P. Autenried,‡ M. Aguet,* and C. Weissmann*

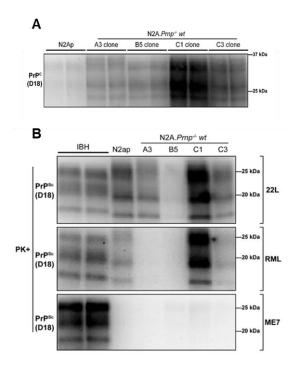
LETTERS

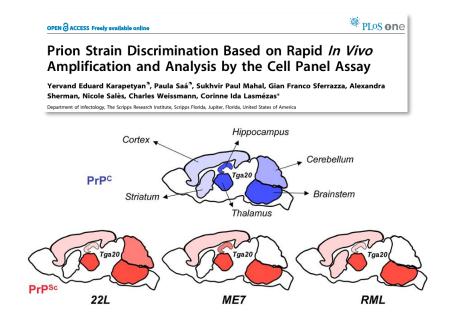
nature biotechnology

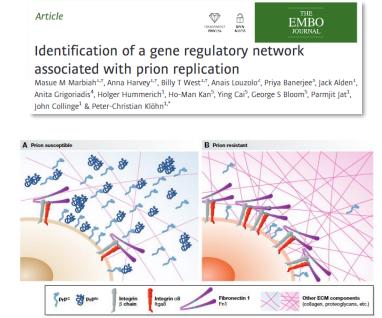
Production of cattle lacking prion protein

Jürgen A Richt^{1,6}, Poothappillai Kasinathan², Amir N Hamir¹, Joaquin Castilla³, Thillai Sathiyaseelan², Francisco Vargas¹, Janaki Sathiyaseelan², Hua Wu², Hiroaki Matsushita², Julie Koster², Shinichiro Kato^{4,5}, Isao Ishida⁴, Claudio Soto³, James M Robl² & Yoshimi Kuroiwa^{4–6}

Salvesen et al. Vet Res (2020) 51:1 https://doi.org/10.1186/s13567-019-0731-2 VETERINARY RESEARCH

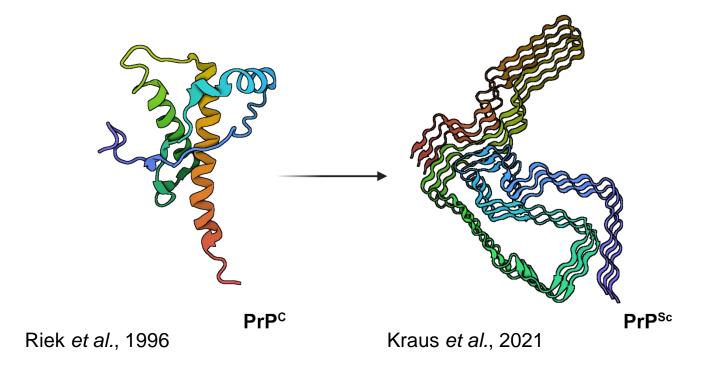

RESEARCH ARTICLE


L . . . L


Goats naturally devoid of PrP^C are resistant to scrapie

Øyvind Salvesen¹, Arild Espenes², Malin R. Reiten^{2,3}, Tram T. Vuong³, Giulia Malachin², Linh Tran³, Olivier Andréoletti⁴, Ingrid Olsaker², Sylvie L. Benestad³, Michael A. Tranulis² and Cecilie Ersdall¹ o

Expression of PrP is required for the manifestation of prion disease... but it is not sufficient.



Jean R.P. Gatdula

Imberdis & Harris, 2014

The problem with PrPSc

PrP^C and PrP^{Sc} are *very* different structurally....

But they are the same protein.

This makes traditional techniques unsuitable for looking at the PrPSc interactome

Novel proximity labeling technique: µMapping

CELL SURFACE MAPPING

Microenvi Cell Chemical Biology transfer o

Jacob B. Geri¹*, Ja Resource

Cory H. White2, Fra High-resolut Olugbeminiyi O. Fa of SARS-Co on the cell s

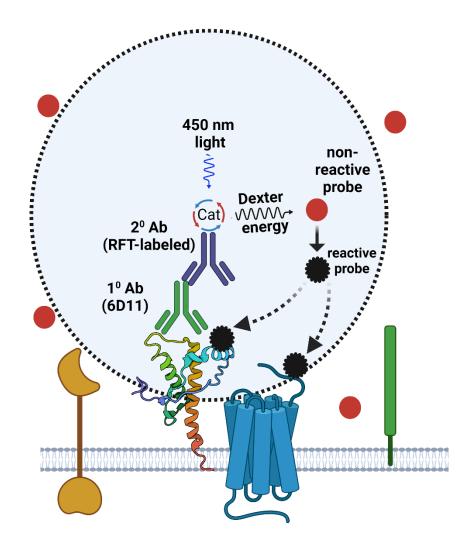
> Suprama Datta, 1,2,3 Da-Yua Nazimuddin Khan, 1,2 Tyler J Olugbeminiyi O. Fadeyi, 4,6,

pubs.acs.org/JACS

Photochemical Identif Syndrome Coronavirus

David F. Fernández, Gabrielle H.

ARTICLES

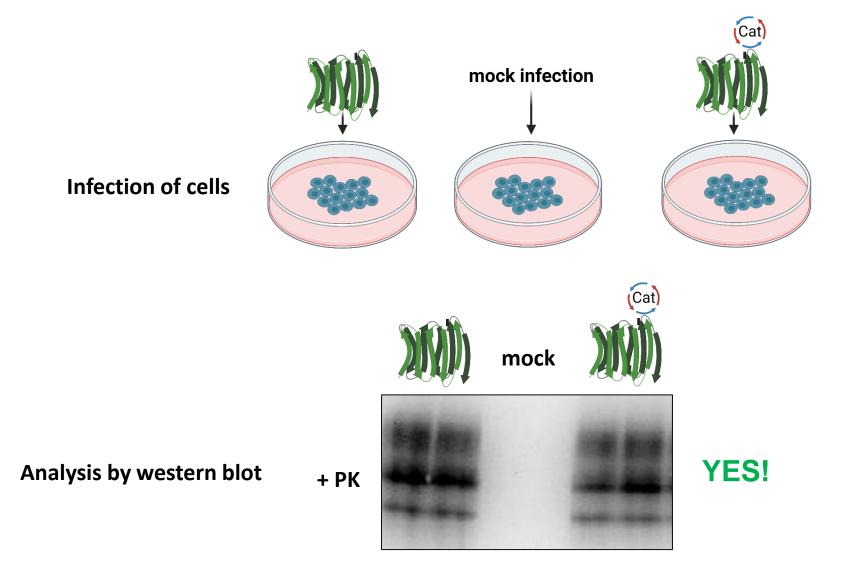

nature chemical biology

Saori Suzuki, Jacob B. Geri, Ste Detection of cell-cell interactions via David W. C. MacMillan,* and Alphotocatalytic cell tagging

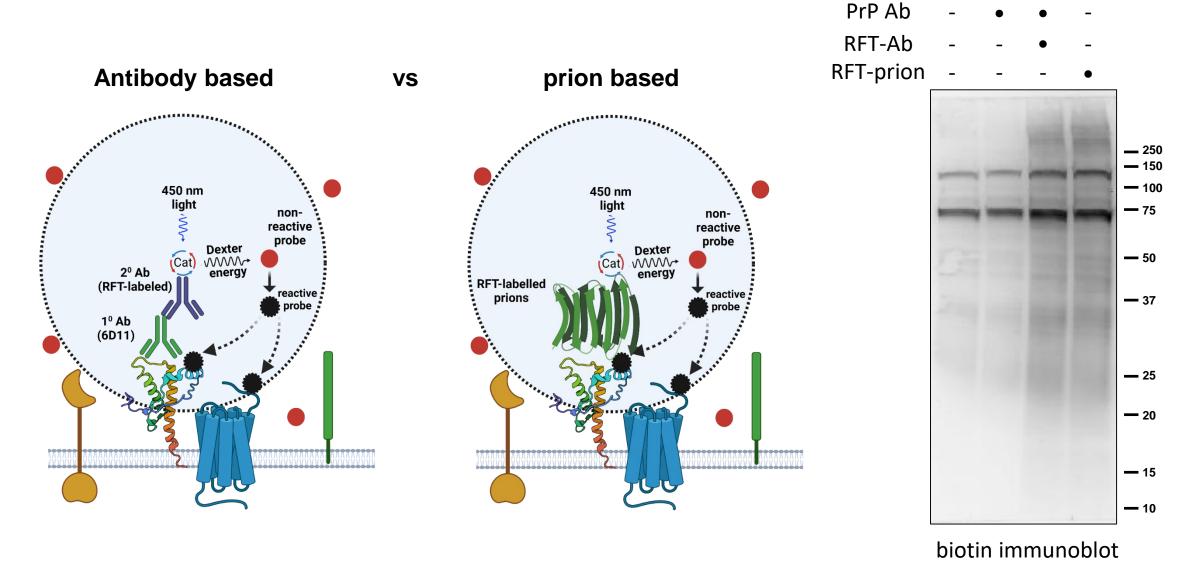
Rob C. Oslund ^{1,7} [∞], Tamara Reyes-Robles ^{1,∞}, Cory H. White¹, Jake H. Tomlinson¹, Kelly A. Crotty 101, Edward P. Bowman2, Dan Chang3, Vanessa M. Peterson3, Lixia Li3, Silvia Frutos4, Miquel Vila-Perelló⁴, David Vlerick⁵, Karen Cromie⁵, David H. Perlman¹, Sampat Ingale¹, Samantha D. O' Hara¹, Lee R. Roberts¹, Grazia Piizzi¹, Erik C. Hett¹, Daria J. Hazuda^{1,6} and Olugbeminiyi O. Fadeyi ^{□1,7}

CellPress

µMapping: PrP^C

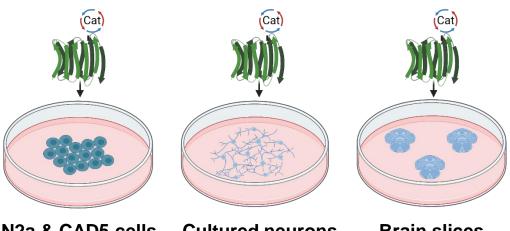


Gene	Protein
Prnp*	PrP
Gpc1*	Glypican 1
Pcdh1	Protocadherin 1
Cntfr	Ciliary neurotrophic factor receptor
Cadm1	Cell adhesion molecule 1
MarcksI1	MARCKS-like protein 1
Pcdhgb1	Protocadherin Gamma Subfamily B, 1
Slc39a10*	Solute Carrier Family 39 Member 10
lgf1r	Insulinlike growth factor1 receptor
L1cam	L1 Cell Adhesion Molecule
Ncam1*	Neural Cell Adhesion Molecule 1
Nes	Nestin
Gprin1	G protein regulated inducer of neurite outgrowth 1
Dbn1	Drebrin 1
Epn1	Epsin 2
Ldlr	low-density lipoprotein receptor
Dgl3	Discs Large MAGUK Scaffold Protein 3
Lrch2	Leu Rich Repeats & Calponin Homo Dom Cont 2


^{*} previously reported PrP interacting protein

Ladan Amin

Are catalyst labeled prions infectious?



Comparing labeling efficiencies

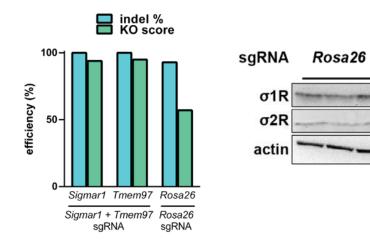
Current experimentation

μMapping:

N2a & CAD5 cells

Cultured neurons

Brain slices


Sigmar1 +

-25

-20

Tmem97

CRISPR knockout:

Mercer et al., 2024

Acknowledgements

The Patrice Haggerty Memorial Grant contributed by William Haggerty

The Joanne (Jody) Atchison Memorial Research Grant contributed by Dick Atchison and Family

The Laura McElmurray Memorial Grant contributed by Mike McElmurray

The Robert Dodd Memorial Grant contributed by Kathleen Dodd and Family

The Lynda Morris Memorial Grant contributed by David Morris and Family

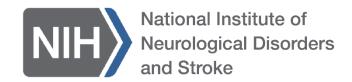
The Sherry Maxwell Fabian Memorial Grant contributed by Tom Fabian

The Nic Ziccardi Memorial Grant contributed by Kandi Ziccardi

The Chuck Fear Memorial Research Grant contributed by Pamela Fear and Family

The Strides for CJD Grant contributed by the Families of the CJD Foundation

The CJD Foundation Grant contributed by the Families of the CJD Foundation


Collaborators:

David A. Harris, MD, PhD Ladan Amin, PhD Jean R.P. Gatdula, BSc

Gerold Schmitt-Ulms, PhD **Cunjie Zhang**, MSc

